Artifact-Free Wavelet Denoising: Non-convex Sparse Regularization, Convex Optimization
نویسندگان
چکیده
منابع مشابه
Non-convex Sparse Regularization
We study the regularising properties of Tikhonov regularisation on the sequence space l with weighted, non-quadratic penalty term acting separately on the coefficients of a given sequence. We derive sufficient conditions for the penalty term that guarantee the well-posedness of the method, and investigate to which extent the same conditions are also necessary. A particular interest of this pape...
متن کاملSparse Recovery by Non - Convex Optimization –
In this note, we address the theoretical properties of ∆p, a class of compressed sensing decoders that rely on ℓ p minimization with p ∈ (0, 1) to recover estimates of sparse and compressible signals from incomplete and inaccurate measurements. In particular, we extend the results of Candès, Romberg and Tao [3] and Wojtaszczyk [30] regarding the decoder ∆ 1 , based on ℓ 1 minimization, to ∆p wi...
متن کاملLock-Free Optimization for Non-Convex Problems
Stochastic gradient descent (SGD) and its variants have attracted much attention in machine learning due to their efficiency and effectiveness for optimization. To handle largescale problems, researchers have recently proposed several lock-free strategy based parallel SGD (LF-PSGD) methods for multi-core systems. However, existing works have only proved the convergence of these LF-PSGD methods ...
متن کاملSub-sampled Cubic Regularization for Non-convex Optimization
We consider the minimization of non-convex functions that typically arise in machine learning. Specifically, we focus our attention on a variant of trust region methods known as cubic regularization. This approach is particularly attractive because it escapes strict saddle points and it provides stronger convergence guarantees than firstand second-order as well as classical trust region methods...
متن کاملRevisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization
We provide stronger and more general primal-dual convergence results for FrankWolfe-type algorithms (a.k.a. conditional gradient) for constrained convex optimization, enabled by a simple framework of duality gap certificates. Our analysis also holds if the linear subproblems are only solved approximately (as well as if the gradients are inexact), and is proven to be worst-case optimal in the sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2015
ISSN: 1070-9908,1558-2361
DOI: 10.1109/lsp.2015.2406314